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1 Introduction
VOX is a UOV-based hash-and-sign signature scheme from the Multivariate Quadratic
(MQ) family. In order to reduce the size of the public key, we use a new variant proposed by
Faugère, Macario-Rat, Patarin, and Perret under the name UOV+̂ and the QR (Quotient
Ring) technique introduced by Furue, Ikematsu, Kiyomura, and Takagi at ASIACRYPT
2021. The UOV+̂ has an interesting security property. The quadratic forms of a UOV
public key have a large common isotropic subspace, which is unusual for a random quadratic
system. UOV+̂ adds a small number of random quadratic forms to the public keys to
hide this subspace. This makes the signing process more complex since we have to solve a
small quadratic system, but also allows us to reduce the public key of UOV for equivalent
security.

The size of the signature is 816 bits for VOX-I with 128 bits of security for public
key size 8.9Kbytes. The verification time is very good and we can sign 3,700 messages
per second if the secret key is decompressed. VOX has very attractive properties, but we
will also propose another tradeoff, called Full-VOX. This variant offers a double security
criteria: if the security of UOV+̂ is broken, the adversary has still to break a UOV instance.
The QR technique to reduce the size of the public key is also removed from this variant.

1.1 General introduction
Multivariate Cryptography is a mature proposal in the landscape of public-key alternative
to RSA and Elliptic Curve Cryptography since 1988 and the introduction of the Matsumoto-
Imai cryptosystem. Many encryption and signature schemes have been proposed in the
nineties and Unbalanced Oil and Vinegar (UOV for short) is one interesting example.
One of the main advantage of this family is to propose very small signature size, which is
one important feature of the new NIST call for proposal. Indeed, hash-based signatures
and lattice-based signatures are very large, and MQ can be a good intermediate for short
signature. The main drawback of this kind of scheme is the size of the public-key, but
fortunately, many new ideas allow to reduce the public-key size.

VOX is a multivariate post-quantum public key signature scheme. Its name means
“Vinegar, Oil and Multiplications”, or alternatively “Extended Oil and Vinegar Signature
scheme”. As we will see its main advantages are:

• it generates very short signatures,

• fast verification of signatures,

• its simplicity,

• a public key of reasonable size (which is uncommon in multivariate cryptography),

• it is based on UOV, a well-known scheme studied for more than 20 years,

• VOX has strong security arguments.

General Presentation of VOX. We start by quickly presenting the 4 main ideas behind
the design of VOX. A detailed mathematical presentation of VOX will be given in other
sections of this document, with more explanations.

1. The UOV algorithm. This algorithm was presented at EUROCRYPT 1999
in [KPG99] and has been the subject of many research papers since 24 years. UOV is
therefore a well-known mature algorithm, and moreover it has a very simple design.
The general principle is as follows: we will have two kinds of variables, o “oil”
variables, and v “vinegar” variables. We also have a secret system of o quadratic
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equations in these (o + v) variables such that we never have a product of an oil
variable with another oil variable. Moreover the public key is obtained with a secret
linear change of variable that will mix the oil and vinegar variables. To sign a
message, we start by randomly fixing the vinegar variables. Hence, we obtain a linear
system of o equations in the o oil variables that can then easily be solved.

2. The BPB technique. This technique (see [PBB10, BPB10, PTBW11]) improves
the key generation step by significantly reducing the public key size without any
security degradation. Since in mutivariate cryptography the size of the public key
is often a bit large, this technique is very appreciated. Besides, its impact on the
performance is small as it only involves solving linear equations.

3. The +̂ technique. This is a relatively new technique, presented in [FmRPP22] by
Faugère et al. It is one of the main innovation of VOX compared with UOV.
The idea is to mix a small number t of random quadratic equations in the initial set
of secret quadratic equations. (This explains the “X” letter in VOX since we will
add some oil times oil terms). Since the t equations are truly random it is reasonable
to think that this process can only increase the security. However, in order to sign a
message we will now have to solve a quadratic system in t variables (after a gaussian
elimination). This can be done in an efficient way (for example with Gröbner basis
variants) thanks to the fact that t is small (t will be typically between 1 and 9 for
example). One of the beauty of this idea is the fact that the complexity of this
resolution depends on t but is almost independent of the size of the finite field where
the variables belong (we do not perform exhaustive search on t values), unlike the
complexity of the attacks that seem to increase rapidly with this size.

4. The QR technique. This is also a relatively new technique, presented by Furue et
al. in [FIKT21]. As with the BPB algorithm, thanks to this technique it is possible to
significantly reduce the size of the public key (and we will combine the two techniques
in VOX). However, unlike the BPB technique, it is not proved that the QR technique
keeps the same security for the scheme.
In VOX, with the parameters that we will choose, we are confident to use this
technique, thanks to the strengthening obtained by the +̂ technique. (However, in
UOV without +̂ we do not recommend to use it). We also propose a variant (see
VOX-F below) where we will not use this technique.

VOX-F variant (VOX-Full, nickname “FOX”). VOX is our main candidate. In this
document, we will present and explain the precise parameters that we will choose for VOX
and the expected security for these parameters. However, we will also present a variant of
VOX, called “VOX-F” (or Full VOX, nickname “FOX”). The design of VOX-F has been
chosen in order to obtain easier security arguments than for VOX (but at the cost of a less
efficient algorithm). Therefore, for example, in VOX-F we will not use the QR technique.
Moreover if in VOX-F an attacker was able to remove all the equations introduced by the
+̂ technique, then the resulting UOV system will still have the required security against
the best known attacks. Conversely, the VOX-F parameters will be chosen such that the
elimination of the equation of the equations introduced by the +̂ is a problem with at least
the same complexity. Therefore the security of VOX-F is related to two problems: the
elimination of the +̂ equations and solving the resulting UOV system. (Unlike in VOX
where the resulting system parameters do not have the security wanted, i.e. VOX relies on
the fact that the +̂ technique increases the security).

A short history of UOV and VOX. The “Oil and Vinegar” algorithm was first presented
in September 1997 (see [Pat97]). At that time the number of vinegar variables was the
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same as the number of oil variables (o = v). Due to this reason, the scheme was broken in
1998 by Kipnis and Shamir in [KS98]: they were able to recover the secret key.

Soon after, it was noticed that this attack does not work when v is sufficiently larger
than o. This gives the UOV algorithm (see [KPG99]). Since 1999, the UOV signature
scheme has not be broken, and some ideas have been found in order to reduce its public
key size in [PBB10, BPB10, PTBW11].

UOV satisfies very good properties (simplicity of the design, short signatures, no known
efficient quantum attacks, speed of signature generation and verification), it may seem
weird that UOV was not already submitted in the first NIST call for PQ signature schemes.
The explanation is the following: in fact two variants of UOV were submitted, Rainbow and
LUOV. Rainbow [DS05] is a 2005 variant where one uses more than 2 types of variables, in
order to obtain very short signature. LUOV [BP17] is a 2017 variant where we use matrices
on a sub-field, in order to reduce the public key size. However these two variants were
found to be disappointing due to the discovery of new attacks: see [Beu22a] on Rainbow,
and [DDS+20] on LUOV. Nevertheless, a precise analysis of these new attacks shows that
the underlying UOV problem is still difficult, and therefore is still an efficient scheme when
its parameters are well chosen [BCH+23].

Some arguments of security. Finding a solution of a general system of multivariate
quadratic equations (MQ problem) over a finite field K is an NP-hard problem (for every
finite field K). Moreover, this problem seems to have the same complexity on average and
in the worse case (however this is not proved). For random quadratic equations, the best
known algorithms combine Gröbner bases variants and exhaustive search of some variables.
Their complexities are well studied, and often increase exponentially with the number of
variables.

The quadratic systems used in UOV and VOX are not random (since there is a trapdoor)
and we do not claim that solving these kind of systems is NP-hard. The MinRank problem
(used in the cryptanalysis of many multivariate systems to recover the secret key) is (as MQ)
an NP-hard problem. Due to its simplicity, the UOV problem has its own interest. As we
will see later there is a proof of EUF-CMA security for UOV based on this problem [SSH11],
which shows that computing UOV signatures does not give information on the secret key.
More precise arguments on VOX and VOX-F will be given later in this document.

Side-Channel Attacks. It is expected that all cryptographic algorithms can be attacked
with side-channel attacks. However it is also expected that it is possible to obtain a
sufficient practical security by using countermeasures, typically by using appropriate
software techniques. UOV and VOX are not an exception.

Known side-channel attacks on UOV (see for example [FKNT22, ACK+23]) are not
very impressive (more details will be given later in this document). Moreover it seems
relatively easier to write countermeasures on UOV/VOX against side channel attacks than
for most of other public key algorithms. This comes from the fact that in UOV/VOX
the secret key is relatively large (if a few bits of the secret key are found the scheme may
remain secure) and also from the fact that the techniques to protect the linear secret
transformation are relatively easy and classical. However, side-channel attacks on VOX
are not the main subject of this document.

1.2 Design rationale and comparison with other UOV schemes
Our main objective is to propose a signature scheme with small signature size, since this
is the drawback of lattice-based and hash-based signature, and with alternative security
assumption. In the same time, VOX introduces new ideas to reduce the size of the public
key, which is an important parameters for bandwidth-constraint applications, which is one
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of the drawback of post-quantum schemes and also for MQ schemes. We think that the
UOV+̂ improves the security of UOV, which makes VOX close to a random quadratic
system. The inherent structural property of UOV, having a common isotropic subspace for
all quadratic forms of the public key is no more present. Finally, the QR transformation
can be seen as a structured version of MQ schemes.

As a consequence, VOX-I achieves signature of size 102B with public key of size 9104B.
The performances of key generation, signing and verification are rather good compared to
other schemes. In the following, we compare VOX with other attractive UOV signature
schemes.

The UOV Signature scheme [KPG99]. UOV has a public-key of O(mn2 log q) bits for
m quadratic equations in n variables. For a 128-bit security level (NIST Level 1), we can
take m = 53, n = 3m and q = 31, which amounts to 421 KB. With BPB trick, the key size
goes from O(mn2 log q) bits to O(m3 log q) bits, and the public key size is 48KB.

Since the signature size is O(n log q), this is 100B. The signature size of UOV is very
short. The public key is however 10 times larger than for VOX.

A recent paper by Beullens et al. [BCH+23] gives similar secure parameters for UOV:
“At NIST security level 1, this results in either 128-byte signatures with 44 kB public keys
or 96-byte signatures with 67 kB public keys.”

The MAYO Signature [Beu22b]. For 128 security bits (NIST Level 1), we can take
m = 60, n = 62 and q = 31, and an oil space of dimension o = 6, which is 420B for the
signature and 803B for the public-key. The improvement of MAYO is the size of the
public-key from m3 log q to mo2 log q, with a new security assumption since the size of the
oil space is small. This allows to reduce the number of variables. However, it adds a
novel security assumption, called, Whipped MQ Problem, and defined in page 13 of the
paper. In conclusion, MAYO achieves parameters close to Falcon for the signature and
public key size, under MQ-related assumptions.

MPC-in-the-head signature schemes. MQ-based MPC in the head signature schemes
offer security proofs under the MQ hypothesis, without the need of an underlying trapdoor.
However, these high guarantees come at the cost of high signature and public key sizes. As
an example, the MQDSS scheme [CHR+16, CHR+20] has a signature size of 27 KB for a
security level of 128 bits. More recent schemes such as MUDFISH and SUSHYFISH [Beu20]
achieve smaller signature sizes of respectively 14 KB and 12 KB for the same security level.

2 General algorithm specification (part of 2.B.1)
2.1 Parameter space
The main parameters involved in Vox are:

• λ, the security level of VOX, with possible values 128, 192, and 256,

• q, a prime power, order of a finite field Fq,

• o, the number of Oil variables, also the number of equations in public and secret key,

• v, the number of Vinegar variables,

• t ≤ o, the number of totally random equations in the secret key,

• c, a common divider of o and v, that controls the QR variant.



7

2.2 Secret-key and public-key
The public-key in Vox is a set Pub = {p1, . . . , po} ∈ Fq[x1, . . . , xo+v] of o homogeneous
quadratic equations in o + v variables. So formally,

pi =
∑

1≤k≤j≤o+v

ai,j,kxjxk i = 1, . . . , o, (1)

where ai,j,k are elements of Fq. The secret-key is composed of a set Sec = {p′
1, . . . , p′

o} ∈
Fq[x1, . . . , xo+v] of o homogeneous quadratic equations in o + v variables and two random
bijective linear mappings S, T, respectively in GLo(Fq) and GLo+v(Fq). In the secret
polynomials Sec, the first o variables {x1, . . . , xo} are called the Oil variables, the last v
variables {xo+1, . . . , xo+v} are called the Vinegar variables. The polynomials of Sec have
the generic form of quadratic homogeneous polynomials:

p′
i =

∑
1≤k≤j≤o+v

a′
i,j,kxjxk i = 1, . . . , o, (2)

where a′
i,j,k are elements of Fq ; moreover the last o− t polynomials {p′

t+1, . . . , p′
o} of Sec

have the special (UOV) form :

p′
i =

∑
1+o≤j≤o+v

1≤k≤j

a′
i,j,kxjxk (3)

or equivalently the coefficients a′
i,j,k are canceled for i = t + 1, . . . , o and 1 ≤ k ≤ j ≤ o or

said otherwise, there is no “Oil×Oil” monomial in these polynomials.
By analogy, we call also the first t polynomials as the Vinegar polynomials, and the

last o − t polynomials as the Oil polynomials. Likewise, we call the triplets (i, j, k) (or
associated monomials) satisfying t + 1 ≤ i ≤ h, 1 ≤ k ≤ j ≤ o, the Oil triplets, and the
complement, that is: 1 ≤ i ≤ t, 1 ≤ k ≤ j ≤ o + v or ( t + 1 ≤ i ≤ o, 1 ≤ k ≤ j and
o + 1 ≤ j ≤ o + v), the Vinegar triplets. We note Pubv and respectively Pubo the part
composed exclusively of vinegar monomials (resp. oil monomials) and Secv, (resp. Seco)
the vinegar polynomials (resp. oil polynomials).

The public-key and the secret key are required to satisfy:

Sec = S ◦Pub ◦T. (4)

Since the security and the mechanism of the scheme rely on two different types of
variables and equations, the two linear mappings T and S may be expressed as block
matrices in the folowing way:

S =
(

It S′
t×(o−t)

0 Io−t

)
, T =

(
Iv T′

v×o

0 Io

)
, (5)

where I is the identity matrix with given dimension, and T′ and S′ are rectangular full
random block matrices with given dimensions. Note that due to the presence of identity
blocks and their triangular form, the matrices of S and T are inversible, whatever the
values of T′ and S′.

2.2.1 The QR variant

The QR variant was originaly presented in [FIKT21]. The QR variant aims to decrease the
size of public and secret key, with probably no impact on the security of the scheme. The
QR variant may be enable when c > 1. In this case, we introduce G = Fq(g) = Fq[x]/p(x),
a field extension of Fq of degree c, i.e. g is a formal root of an irreducible univariate
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polynomial p of degree c over Fq. Since c divides o and v, we note oc = o
c and vc = v

c .
We note Φ the natural isomorphism : (Fq)c 7→ G, (x1, . . . , xc) →

∑c
i=1 gi−1xi. We note

ϕ the natural embedding : (Fq) 7→ G, x→ x. For a given mapping f : A 7→ B, we denote
the natural extension f ⟨n⟩ : An 7→ Bn, (x1, . . . , xn) → (f(x1), . . . , f(xn)). We introduce
also the well known trace morphism Tr : Fq(g) 7→ Fq, x →

∑c−1
i=0 xqi . Note that the QR

variant may use any linear form instead of the Trace. However, since all linear forms
can be expressed as x → Tr(ax), for a given a ∈ G, it’s just a matter of a constant
choice. We use the notation x̄ to indicate that x̄ is in or over G. Therefore, we can define
ξ̄i = Φ(xci+1, . . . , xci+c).

In this variant, Pub, Sec and T, can be obtained from ¯Pub, ¯Sec and T̄ that we
present now. S is defined as before as a random element of GLo(Fq). ¯Pub and ¯Sec are sets
of o homogeneous quadratic equations in oc + vc variables. The o polynomials {p̄′

1, . . . , p̄′
o}

of ¯Sec have the generic form of homogeneous polynomials:

p̄′
i =

∑
1≤k≤j≤oc+vc

āi,j,kx̄j x̄k (6)

where ā′
i,j,k are elements of G. Accordingly, the last o− t polynomials {p̄′

t+1, . . . , p̄′
o} of

¯Sec have the special (UOV) form :

p̄′
i =

∑
1+oc≤j≤oc+vc

1≤k≤j

āi,j,kx̄j x̄k. (7)

T̄ is a random bijective linear mapping in GLoc+vc(G). Moreover, ¯Pub, ¯Sec, S and T̄
are required to satify

¯Sec = ϕ⟨o⟩ ◦ S ◦ ϕ⟨o⟩−1
◦ ¯Pub ◦ T̄. (8)

In this variant, we define then

T (x1, . . . , xo+v) = Φ⟨oc+vc⟩−1(T̄ (ξ̄1, . . . , ξ̄oc+vc
)) (9)

and

pi(x1, . . . , xo+v) = Tr(p̄i(ξ̄1, . . . , ξ̄oc+vc
)) i = 1, . . . , o,

p′
i(x1, . . . , xo+v) = Tr(p̄′

i(ξ̄1, . . . , ξ̄oc+vc)) i = 1, . . . , o,
(10)

In this variant, as soon as eqs. (5), (6), (7), (8), and (9) are satisfied, then eqs. (1),
(2), (3) and (4) are also satisfied.

2.2.2 Matrix expression of the QR variant

The QR variant is designed so the matrix expressions of T, Pub and Sec can easyly be
deduced from those of ¯Pub, ¯Sec, and T̄. Each coefficient in ¯Pub, ¯Sec corresponds to a
c× c-block in Pub and Sec: for a coefficient ā, we get a block Wā whose coefficient i, j is
Tr(āgi+j−2). With this convention, one can easyly check that :

(xci+1, . . . , xci+c)Wā
t(xcj+1, . . . , xcj+c) = Tr(āξ̄iξ̄j)

Each coefficient of T̄ corresponds to a c× c-block in T: for a coefficient ā, we get a block
Uā whose row i is Φ−1(āgi−1). With this convention, one can easyly check that :

(xci+1, . . . , xci+c)Uā = Φ−1(āξ̄i)

Furthermore this block notation enables to notice that, for all a1, a2, a3 ∈ G

Ua1 + Ua2 = Ua1+a2
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Wa1 + Wa2 = Wa1+a2

Ua1Wa2
tUa3 = Wa1a2a3

Remark 1. For implementation’s sake, we can start by computing Ug as the companion
matrix of the polynomial p, and W1 as the matrix whose i, j-coefficient is Tr(gi+j−2). The
other matrices are obtained by the following formulas :

UΦ(a1,...,ac) =
c∑

i=1
aiU

i−1
g

and
WΦ(a1,...,ac) =

c∑
i=1

aiU
i−1
g W1

Remark 2. The matrix companion of the monic univariate polynomial of degree c, xc +
ac−1xc−1 + · · ·+ a1x + a0 is by definition the c× c matrix

0 1 0 . . . 0
0 0 1 0 . . . 0
... . . . . . . . . . ...
0 · · · 1 0
0 · · · 0 1
−a0 −a1 · · · −ac−1


.

Remark 3. Each c× c-block in Pub, Sec and T, has c2 coefficients. However due to the
basis representation given above, they can be stored as c coefficients only, hence the gain
of size.
Remark 4. As also pointed out in the original paper [FIKT21], the choice of even q should
be avoided. The reason is that in this case, the quadratic forms associated with the
matrices Wa set in the diagonal blocks of public and secret keys, are diagonal forms.
Therefore, the choice of q even would lead to weak keys.

2.2.3 The BPB Compression

This feature has been introduced in [PBB10, BPB10]. Its purpose is also to decrease the
size of the public key. It can be used in conjunction with the QR variant or without it and
has no impact on the security, and almost no impact on the generation time. The idea of
this feature is that part of the public key can be stored as the seed of DRBG, while the
secret key still can keep its property of randomness.

The equation Sec = S ◦ Pub ◦ T says that the coefficients of Sec are polynomial
expressions in the coefficients of S, Pub, and T, with respectively degrees 1, 1, and 2.
Therefore, when S and T are set, then the coefficients of Sec are linear expressions in
the coefficients of Pub and vice versa. The idea developed in [PBB10, BPB10], says that
you can fix the Vinegar coefficients of Pub to random values, and find the Oil coefficients
of Pub, satisfying a linear system stating that the Oil coefficients of Sec must be zeros.
Practically, if Pubv and Pubo are the Vinegar and Oil parts of the public key, they must
satisfy

(S ◦Pubv ◦T)o + (S ◦Pubo ◦T)o = 0.

However, due to the special triangular block forms of S and T, we have

(S ◦Pubo ◦T)o = Pubo.

Therefore in our case, the BPB compression simply amounts to set:

Pubo = −(S ◦Pubv ◦T)o.
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2.2.4 Key generation process

The overall key generation process is detailed in alg. 1.

Algorithm 1 Key Generation for Compressed VOX public keys
1: procedure CryptoSignKeyPair(sk, pk)
2: SeedSec ← randombytes(32)
3: S← GenerateS(SeedSec)
4: T̄← GenerateT(SeedSec)

5: SeedPub ← randombytes(32)
6: ¯Pubv ← GeneratePub(SeedPub)
7: ¯Pubo ← −(S ◦ ¯Pubv ◦ T̄)o

8: ¯Sec← S ◦ ¯Pub ◦ T̄
9: sk ← encodeSK(SeedSec, SeedPub, ¯Sec)

10: pk ← encodePK(SeedPub, ¯Pubo)
11: end procedure

2.2.5 Key material encoding

The generation process in alg. 1 shows that each element can be stored and or used in a
compact and or expanded form.

The maximum compressed format for the secret key is the concatenation of SeedSec
and SeedPub, hence 64 bytes.

The maximum compressed format for the public key is the concatenation of SeedPub
and a compact representation of Pubo, hence 32 + ⌈((o− t)∗o∗ (o/c + 1)/2∗ ⌈log2(q)⌉)/8⌉
bytes.

An intermediate format for the secret key is to store SeedPub, SeedSec and ¯Sec, which
is a good tradeof between time and memory.

In VOX, q has been choosen as the nearest prime by default to a power of two, as to
minimize the loss of memory for a compact representation. Therefore it is efficient to store
a list of elements of Fq as packed bits. Seeds can naturally be stored as byte strings.

2.3 Signing process
Vox uses the Hash and Sign paradigm. To sign a message M , Vox requires a hash function
H valued in the arrival set of Pub, which is namely (Fq)o. A signature σ of the message
M is a solution in x of the equation Pub(x) = H(M). In order to solve it, Vox uses the
knowledge of the secret key and solve instead the equation in z : Sec(z) = S(H(M)), then
a signature is σ = T(z).

Solving Sec(z) = y uses the special form of its polynomials and the same kind of hint
used for UOV. First sets the vinegar variables to some random values. Then the system
can be split into two parts : an affine part and a quadratic part. The affine part is a
system of o− t equations in o variables. This part can be used to eliminate o− t variables,
that is o− t (say) first variables can be expressed as affine combinations of the (say) last t
variables 1. Then these o− t variables are eliminated from the the quadratic part, that is
these variables are replaced by their expression in the last t variables. Then the quadratic
part becomes a system of t quadratic equations in t variables. This system can be solved
in a classic way by computing a (graded reverse lexicographic) Gröbner basis, then a
(lexicographic) Gröbner basis, then solving amounts to find the roots of one univariate

1For a random choice of the Vinegar variables, this affine system has a probability 1/qt+1 to be singular.
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polynomial. This in turn gives the possible values of the t variables, then the other o− t
variables follow by using their affine expressions. Adding the initial random values of the
vinegar variables gives a complete solution for z. Multiplying z by T gives the signature.

When the system has more than one solution, we need a procedure to chose determin-
istically one of them. Our choice is to draw at random at the same time the Vinegar is
drawn, one supplementary value used as a milestone. We then consider Fq as a dial of a
clock with q values, then the chosen solution is the first one encountered on the dial when
starting from the milestone and traveling clockwise.

Algorithm 2 Signature Algorithm
1: function VoxSign(hash, SeedVinegar, S, T, Sec)
2: y ← hash × S
3: count ← 0
4: repeat
5: repeat
6: vinegar,hint ← GenerateVinegar(SeedVinegar,count) ▷ Deterministic

random vinegar + milestone for choosing solution
7: count ← count +1
8: L← Evaluate(Seco − yo, vinegar)
9: success,H ← SolveLinear(L)

10: until success ▷ here, L is regular
11: Q← Evaluate(Secv − yv, vinegar, H)
12: success,ξ ← SolveQuadratic(Q, hint)
13: until success ▷ here, Q is regular and has a solution
14: oil ← H × ξ
15: z ← vinegar ∥ oil
16: σ ← z ×T
17: return σ
18: end function

19: procedure CryptoSign(SignedMessage, Message, sk)
20: SeedSec, SeedPub, T, S, Sec← decodeSK(sk)
21: hash, SeedVinegar ← HashAndSeed(Message, SeedPub)
22: σ ← VoxSign(hash, SeedVinegar ∥ SeedSec, S, T, Sec)
23: SignedMessage ← EncodeSignature(Message, σ)
24: end procedure

2.4 Verification process

The verification process is simple. To verify a signature σ of a message M , it suffices to
compute Pub(σ) and H(M), and check that these values are equal. See alg. 3.

Remark 5. One can also compute instead Tr( ¯Pub(Φ⟨oc+vc⟩(σ))), since this leads to the
same result.
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Algorithm 3 Verification Algorithm
1: function VoxVerify(σ, hash, Pub)
2: Result ← true
3: for i← 1, o do
4: Result ← Result AND (σi EQUAL Evaluate(pi,hash))
5: end for
6: return Result
7: end function

8: function CryptoSignOpen(SignedMessage, Message, pk)
9: SeedPub, Pub← decodePK(pk)

10: Message, σ ← decodeSignedMessage(SignedMessage)
11: hash, ⊥ ← HashAndSeed(Message, SeedPub)
12: return VoxVerify(σ, hash, Pub)
13: end function

3 List of parameter sets (part of 2.B.1)
We define the parameters for each variant of VOX according to the three security levels
defined by the NIST.

Variant Security Level q o v t c |sig| |cpk| |sk| |csk|
VOX-I 128 251 8 9 6 6 102 B 9,104 B 35,056 B 64 B

VOX-III 192 1021 10 11 7 7 184 B 30,351 B 111,297 B 64 B
VOX-V 256 4093 12 13 8 8 300 B 82,400 B 292,160 B 64 B

Figure 1: Parameter sets and corresponding key and signature sizes for the VOX signature
scheme.

4 Design rationale (part of 2.B.1)
VOX has to be seen as a natural extension of UOV, driven by the parameter t, number of
totally random equations in the secret key. The value t = 0 corresponds to the original
UOV scheme, while t = o corresponds to a complete random system of equations, with
no particular “trapdoor”. Therefore the parameter t has to be adjusted between those
two extreme values 0 and o, so that the tradeoff enables both security (difficulty to break
the scheme) and efficiency (ability to invert the trapdoor). We can assert that, as soon
as t > 0, VOX is stronger than UOV, with other parameters alike. For instance, the
Oil-finding problem of UOV that we can state as:

Problem 1. Given a UOV public key Pub, find O, a o-dimensional subspace such that
Pub vanishes on O.

becomes for VOX:

Problem 2. Given a VOX public key Pub, find O, a o-dimensional subspace such that
Pub on O, is a set of quadratic polynomials of dimension t.

If one knows how to solve the VOX-problem for a generic t, then she can ipso facto
solve the problem for t = 0.
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Regarding the inversion of the trapdoor of VOX, we have shown that its core amounts
to solve a quadratic system of t equations in t variables. From an attacker point of view,
inverting the public system roughly amounts to solve a system of o equations in o variables.
Therefore t also measures in a certain way the advantage of the legitimate user upon the
attacker.

Our main argument for the security of VOX, is that any attack against it would
primarily be a UOV-attack, where the attacker selects at random equations in the VOX
public key-space, and hopes that by chance that they are in fact UOV-like. Indeed, if
one selects a random linear combinaison of VOX public key polynomials, then there is
one chance out of qt, that the contribution of the vinegar polynomials (the first t ones)
vanishes. However, we believe that any distinguishing key attack against UOV requires
at least 3 equations. Therefore choosing the parameters such as q3t > 2λ prevents any
UOV-like attack.

In the same vein, we have also imagined to base VOX on the original (balanced) Oil and
Vinegar. In this particular case, we know that two equations of OV can be distinguished
from two random ones. Therefore we think that parameters satisfying c = v = o and
q2t > 2λ may lead to interesting choices whith significantly shorter public keys and
comparable signature size. These cases need some further investigations.

It has been demonstrated that the BPB construction has no impact on the security
of the UOV scheme and is all benefit to the construction of secret and publick key, since
it helps to represent them in a condensed way. It is obviously also the case for the VOX
scheme.

In the same vein, the QR modification (with odd q) seems to have no impact on the
security, since apparently the modelisation of any attack on VOX seems easier in the
ground field than in the extension field, therefore any information about the QR structure
is lost by the attacker.
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5 Detailed performance analysis (2.B.2)
5.1 Benchmarks
We test our implementation on a 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz
processor.

In the following (C) represents the reference implementation, while (AVX2) the opti-
mized implementation.

• VOX-I Benchmarks: average of 1000 iterations

Timing (AVX2) Number of Timing (C) Number of
cycles (AVX2) Cycles (C)

Keygen 0.39 ms 707,796 1.30 ms 2,350,064
Sign 0.37 ms 664,265 0.38 ms 679,237

Sign (cached SK) 0.27 ms 488,308 0.29 ms 517,285
Verify 0.09 ms 168,567 0.22 ms 396,311

Verify (cached PK) 0.02 ms 44,085 0.07 ms 134,240

• VOX-III Benchmarks: average of 1000 iterations

Timing (AVX2) Number of Timing (C) Number of
cycles (AVX2) Cycles (C)

Keygen 2.22 ms 4,006,402 5.17 ms 9,334,246
Sign 1.50 ms 2,709,851 1.63 ms 2,937,318

Sign (cached SK) 1.05 ms 1,887,598 1.14 ms 2,061,593
Verify 0.40 ms 713,968 0.86 ms 1,548,342

Verify (cached PK) 0.08 ms 141,778 0.27 ms 486,889

• VOX-V Benchmarks: average of 1000 iterations

Timing (AVX2) Number of Timing (C) Number of
cycles (AVX2) Cycles (C)

Keygen 7.14 ms 12,893,376 14.46 ms 26,097,363
Sign 6.71 ms 12,110,394 7.33 ms 13,226,130

Sign (cached SK) 4.93 ms 8,902,607 5.41 ms 9,772,441
Verify 0.88 ms 1,585,504 2.07 ms 3,734,592

Verify (cached PK) 0.14 ms 259,305 0.65 ms 1,180,465

5.2 Implementation details
In the implementation, we use the following definition for the field extensions.

VOX-I VOX-III VOX-V
Polynomial X6 + X + 1 X7 + X + 5 X8 + 2
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5.2.1 Random generation

In alg. 4 can be found the tools used for managing the conversion between the extension
field Fqc and the ground field Fq.

Algorithm 4 QR-related Algorithms
1: procedure AlgebraicSettings(q, c)
2: p←$ an irreducible polynomial of degree c over Fq

3: g ←$ a root of p
4: U ← MatrixCompanion(p)
5: W ← ZeroMatrix(Fq, c, c)
6: for (i, j)← (1, 1), (c, c) do
7: W [i, j]← Tr(gi+j−2)
8: end for
9: I ← IdentityMatrix(Fq, c)

10: return U, W, I
11: end procedure

12: function CoefficientExpansion(ξ̄, U , W , c)
13: return

∑c
i=1 ξiU

i−1W
14: end function

15: function MatrixExpansion(M̄ , U , W , c)
16: n′ ← Dimension(M̄)
17: n← n′ × c
18: M ← ZeroMatrix(Fq, n, n)
19: for (i, j)← (1, 1), (n′, n′) do
20: M -c-block[i, j]← CoefficientExpansion(M̄ [i, j], U, W, c)
21: end for
22: return M
23: end function

VOX makes use of a deterministic random byte generator DRBG that can generate an
infinite byte string. The DRBG is implemented using a virtually infinite byte buffer, a
call DRBG(n) consumes n in the buffer and return them. In reality, DRBG implements
shake256 as an XOF (eXtended Output Function), with a limited sized byte buffer. DRBG
is first initialized with a contextual seed, then subsequent calls to the function shake256
are made to replenish the buffer each time it is emptied.

Based on DRBG, VOX uses a deterministic generator of elements of Fq, defined by
sampling and rejection. An immediate version for the field extension Fqc is defined. See
alg 5.

The random generation of an element of ā ∈ Fqc is performed by c subsequent calls to
SampleRejection to generate its coordinates (a0, . . . , ac−1) in this order.

The needed seeds are obtained by subsequent calls to the randombytes() function, all
seeds are made 32 byte long.
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Algorithm 5 Random-related Algorithms
1: function SampleReject(DRBG) ▷ Return a random integer suitable for an element

of Fq

2: nbbits ← ⌈log2(q)⌉
3: nbbytes ← ⌈log256(q)⌉
4: repeat
5: b← DRBG(nbbytes) ▷ b is the numeric representation (little endiand) of the

byte string on the adequate number of bytes
6: b← TRUNC(b, nbbits) ▷ b is truncated to its least significant nbbits bits
7: until b < q
8: return b
9: end function

10: function SampleRejectExt(DRBG)
11: for i← 1, c do
12: ai ← SampleReject(DRBG)
13: end for
14: return a1, . . . , ac

15: end function

5.2.2 Key generation

The secret elements S, T and T̄ are linear mappings, so they can be naturally represented
as matrices. Moreover, we need only to store and manipulate a sub-matrix for each of them.
So for simplicity’s sake, we’ll keep the same notation for the matrix and its sub-block.

The key elements Pub, Sec, ¯Pub, and ¯Sec, are homogeneous quadratic polynomials, so
they can be naturally represented as triangular matrices. We give here a generic procedure
(see alg. 6) that generates the needed part of a matrix. The procedure GenMatrix shall be
called for each block of matrix to be generated, with given arguments according to the
needs. The benefit of this technique is that the generation of all elements can be possibly
parallelized.

Algorithm 6 Generation of a block of a matrix
1: procedure GenMatrix(M,seed,L, TAG, GenFunc )
2: Initialize(DRBG, seed ∥ TAG)
3: for (i, j) in L do
4: M[i, j]← GenFunc(DRBG)
5: end for
6: end procedure

We define four sets of indexes (sorted in lexicographical order), and corresponding tags.

• Lo = {(i, j) : 1 ≤ j ≤ i ≤ oc}, for the Oil×Oil coefficients, TAG_O=0,

• Lv = {(i, j) : 1 + oc ≤ i ≤ oc + vc, 1 ≤ j ≤ i}, for the Vinegar×Oil coefficients and
the Vinegar×Vinegar coefficients, TAG_V=1,

• LS = {(i, j) : 1 ≤ i ≤ t, 1 ≤ j ≤ o− t}, for S, TAG_S=2,

• LT = {(i, j) : 1 ≤ i ≤ vc, 1 ≤ j ≤ oc}, for T̄, TAG_T=3,

We can now give a complete description of the generation algorithms used in alg. 1,
see alg. 7.
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Algorithm 7 Generation of the key elements
1: function GenerateS(seed)
2: S← ZeroMatrix(Fq, t, o− t)
3: GenMatrix(S, seed, LS, TAG_S, SampleReject)
4: return S
5: end function

6: function GenerateT(seed)
7: T̄← ZeroMatrix(Fqc , vc, oc)
8: GenMatrix(T̄, seed, LT, TAG_T, SampleRejectExt)
9: return T̄

10: end function

11: function GeneratePub(seed)
12: for i← 1, o do
13: ¯Pubi ← ZeroMatrix(Fqc , oc + vc, oc + vc)
14: GenMatrix( ¯Pubi, seed, Lv, TAG_V∥i, SampleRejectExt)
15: end for
16: for i← 1, t do
17: GenMatrix( ¯Pubi, seed, Lo, TAG_O∥i, SampleRejectExt)
18: end for
19: return ¯Pub
20: end function
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Algorithm 8 Solving Algorithms
1: function SolveLinear(L, o, t)

▷ L is an affine system of o− t equations in o variables
2: R← RowEchelelonForm(L)
3: if Rank(R) < o− t then return false, ⊥
4: end if
5: NP ← list of positions of non pivots ▷ free variables
6: P ← list of positions of pivots ▷ dependant variables can be expressed as affine

combinaisons of the free variables
7: H ← affine expressions (i.e. generic solution in free variables) ▷ H is a

o× (t + 1)-matrix (includes constant terms)
8: return true, H
9: end function

10: function SolveQuadratic(Q, hint)
▷ Q is a quadratic system of t equations in t variables

11: G1 ← GroebnerBasis(Q,"grevlex")
12: if G1 is not regular then return false,⊥
13: end if
14: G2 ← GroebnerBasis(G1,"lex") ▷ Change monomial order from "grevlex" to "lex"
15: if G2 is not regular then return false,⊥
16: end if
17: at ← SolveUnivariate(G2[t], hint) ▷ The last polynomial of a regular "lex"

Gröbner Basis must be univariate in xt

18: if no solution then return false,⊥
19: end if
20: for i← 1, t− 1 do
21: ai ← −Evaluate(G2[i]− xi, at) ▷ The ith polynomial of a regular "lex"

Gröbner Basis must be of the kind xi + an univariate polynomial in xt

22: end for
23: return true, a1, . . . , at

24: end function

5.2.3 Hash

The VOX signing process requires a Hash function that randomly sends arbitrary long
messages into the vector space (Fq)o. This can be easily achieved by alg. 9. SeedPub is used
as a publicly known constant diversifier available to both signer and verifier. Secondarily,
we take benefit of this function to generate a seed used for the generation of the vinegar.

Algorithm 9 Hash of a Message and seed for signing
1: function HashAndSeed(Message)
2: HASH ← ZeroVector(Fq, o)
3: Initialize(DRBG, SeedPub ∥ Message)
4: for i← 1, o do
5: HASH[i]← SampleReject(DRBG)
6: end for
7: SeedVinegar ← DRBG(32)
8: return Hash, SeedVinegar
9: end function
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5.2.4 Vinegar generation

The VOX signing process requires the generation of random values for the Vinegar variables,
plus one value for a hint. This generation can occur several times during the signing
process, hence the use of a counter. A seed is produced from the message and the secret
seed, so that an attacker may not guess this process. We detail the generation of this seed
and the vinegar in alg. 10.

Algorithm 10 Vinegar Generation
1: function GenVinegar(seed,counter)
2: V ← ZeroVector(Fq, o)
3: Initialize(DRBG, seed ∥ counter)
4: for i← 1, v do
5: V[i]← SampleReject(DRBG)
6: end for
7: hint ← SampleReject(DRBG)
8: return V, hint
9: end function

6 Expected strength (2.B.4) for each parameter set
The security of VOX has been determined under key recovery attack and forgery attack.
In the first case, the adversary tries to recover the secret key given the public key. In the
forgery attack, the adversary A tries to win the EUF-CMA (Existential UnForgeability
under Chosen-Message Attack). To this end, A interacts with the signing oracle for
message chosen by A, and at the end, he must output a non-already signed message along
with a valid signature. It is important to note that the key recovery attack is the best
attack on UOV schemes. Indeed, we are not aware of any attack exploiting the interaction
with the signing oracle, better than recovering the secret oil subspace.

Consequently, we consider the extended Kipnis-Shamir attack presented in [KPG99],
the generalization by Beullens in the intersection attack [Beu21], and the direct attack
by solving a quadratic system. To apply these attacks on VOX, we need to cancel the +̂
technique on two or more quadratic forms. To cancel the t random forms for one form, we
need to compute on average qt linear combinations. If we want more forms, the complexity
becomes q2t or q3t times the complexity of these attacks. The VOX parameters have been
determined by examining the complexity of the attacks in the small field. If we solve the
equations in the extension field, the number of variables is reduced, but the degree of the
equations becomes higher and the complexity will be higher.

• VOX-I. The complexity of the best attack is given by the HybridF5 algorithm with
time complexity 2134 and memory complexity 2111 according to the MQEvaluator
tool. The complexity of the Kipnis-Shamir attack (resp. intersection attack) is 261

in time (resp. 245) but since we need to cancel the t random forms with complexity
q2t since we need at least 2 such forms, the security becomes 2156 (resp. 2140).

Algorithm log2Time Complexity log2 Memory Complexity
HybridF5 134 111

Crossbread 136.5 95
HybridXLWiedemann 140 66

Figure 2: Complexity of the Algorithms against VOX-I.
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• VOX-III. For VOX-III, the complexity of the best attack is HybridF5 in time
2197.7 and memory 2160. The complexity of Kipnis-Shamir is 284 and with at least
two equations, the complexity of this attack becomes q2t × 284 = 2223.9. For the
intersection attack, the complexity is 248.8 with k = 9. In this case, we need at least
3 equations without errors, and the complexity becomes 248.8 × q3t = 2258.

Algorithm log2Time Complexity log2 Memory Complexity
HybridF5 197.7 160.6

Crossbread 249.6 97.4
HybridXLWiedemann 204.3 91.9

Figure 3: Complexity of the Algorithms against VOX-III.

• VOX-V. For VOX-V, the complexity of the best attack is 2271 in time and 2239

in memory. The complexity of Kipnis-Shamir is 2111 and so the overall complexity
is q2t × 2111 = 2302. The complexity of the intersection attack is 252 with k = 11.
Consequently, if we need at least 3 equations, the overall complexity becomes
q3t × 252 = 2340.

Algorithm log2Time Complexity log2 Memory Complexity
HybridF5 271 239

Crossbread 443 105
HybridXLWiedemann 278 132

Figure 4: Complexity of the Algorithms against VOX-V.

In conclusion, we summarize the security level for the 3 variants of VOX.

Variant Security Level Estimated Security Best Attack
VOX-I 128 134 HybridF5

VOX-III 192 197.7 HybridF5
VOX-V 256 271 HybridF5

Figure 5: Parameter sets and corresponding key and signature sizes for the VOX signature
scheme.

• VOX is EUF-CMA attack. We do not have a security proof for VOX. There
exists a security proof for UOV in [SSH11, KX22] in the ROM and QROM. It is
however much harder to adapt these proofs to VOX as we have to take into account
quadratic forms. The security assumption for VOX is weaker than for UOV as there
is no common isotropic subspace in VOX, contrary to UOV.

• The BUFF attack. In order to avoid the BUFF attack [CDF+21], we hash the
public key and the message. Since the public key is large, we prefer to hash the
public key first and then to hash the message with the hash of the public key when
signing. The consequence, is that when we verify the signature, we also have to
verify the hash of the public key.
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7 Analysis of known attacks (2.B.5)
In this section, we will analyse the resistance of VOX against all known attacks on UOV
and its variants for QR [FIKT21].

7.1 Direct signature forgery attacks

In the forgery attack, the attacker tries to invert the quadratic map Pub(x) = h. So we
estimate its complexity as solving a random quadratic system of o equations in n = (o + v)
variables over Fq. We use the hybrid attack by fixing k variables in [BFP09].

min
k

(
3qk

(
n− k + dreg

dreg

)2(
n− k

2

))

where dreg is the smallest integer d so that the coefficient of zd in

(1− z2)n

(1− z)n−k

is non-positive. We do not consider the polynomial terms in the estimate to lower bound the
complexity. To estimate this attack we also use the tool given by Bellini et al. in [BMSV22]
with many other quadratic system solvers.

7.2 Kipnis-Shamir attack

In the Kipnis-Shamir attack [KS98], the attacker tries to recover directly the oil space by
combining two quadratic forms. The attack works when the number of variables is twice
the number of equations: o + v = 2o, i.e. v = o. It has been extended when o + v ≥ 2o, i.e.
when v > o, to qv−o times polynomial factors in [KPG99], and we remove the polynomial
factors. In order to recover at least two equations without the VOX transformation, we
need to linearly combine on average q2t equations to cancel the t full quadratic equations.
Consequently, we estimate the complexity of this attack to q2t × qv−o, that is q3t.

7.3 Intersection attack

This attack tries to recover k vectors in the intersection of ∩k
i=1MiO, for some matrices Mi

and O describes the Oil space. The attack works when the intersection is not empty, which
means when v + o < 2k−1

k−1 o, i.e. when v < k
k−1 o [Beu21]. The cost of the attack boils down

to solving a system of a random system of
(

k+1
2
)2

o− 2
(

k
2
)

equations in k(v + o)− (2k− 1)o
variables. We must estimate the parameters k and we choose the same strategy as
in [BCH+23]. To evaluate the cost of this attack on VOX parameters, we use the estimator
of Bellini et al. in [BMSV22] that we adapted to consider these attacks on UOV and we
take into account the number of forms we need to mount these attacks.

7.4 Extension of these attacks to QR variant of VOX

In the case of QR, we can either estimate the complexity of the previous attack in the
small field Fq or in the extension field, Fqc . Solving the equations in the extension field
makes the degree of the equations higher as stated in [FIKT21].
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7.5 Quantum analysis
We take into account the quantum version of the direct attack as specified in [SW16,
FHK+17] for solving quadratic systems with m = n equations in n variables over F2 in
time O(20.462n) quantum gates. For quantum attacks, we can also consider a Groverized
version of the HybridF5 with complexity:

min
k

(
3qk/2

(
n− k + dreg

dreg

)2(
n− k

2

))

where dreg is the smallest integer d so that the coefficient of zd in

(1− z2)n

(1− z)n−k

is non-positive.

8 A larger family of Full-Vox parameters
To estimate the security of VOX, the best attack consists in linearly combining the
quadratic forms up to cancelling the added random forms. We need at least two such
cancellations to perform the Kipnis-Shamir attack. This cost is q2t and then the cost of
attacking UOV, which is qv−o = qt in our case. Consequently, we use the rule of thumb

q3t ≈ 2λ,

where λ is the security parameter. This allows us to reduce the parameters of the underlying
UOV scheme. Full-VOX, a.k.a. FOX, does not consider the UOV resistance, but just the
resistance to remove the UOV+̂ transformation, and the rule of thumb is

q2t ≈ 2λ.

Moreover, as the added structure of the QR is not as mature as the standard UOV, as
this variant has been less studied, we remove this structure in FOX.

Parameters for expected security

Variant Security Level q o v t |sig| |cpk| |csk|
FOX-I 128 251 48 72 8 120 B 47,056 B 64 B

FOX-III 192 4093 68 106 8 261 B 211,156 B 64 B
FOX-V 256 65521 91 140 8 462 B 694,892 B 64 B

Figure 6: Parameter sets and corresponding key and signature sizes for the Full-VOX
(FOX) signature scheme.

9 Advantages and limitations (2.B.6)
The advantages of VOX are the following.
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• Short signatures. VOX signature sizes are respectively 102, 167, and 276 bytes for
the NIST security levels I, III, and V. This is much shorter than currently selected
signature schemes for Falcon (666 bytes for NIST Level I), Dilithium (2,490 bytes
for NIST Level I), and Sphincs+ (over 8,000 bytes for NIST Level I). This can be
compared with ECDSA of 64 bytes for NIST Level I.

• Fast verification. The verification just performs some hashing, and evaluates the
public key form, which is very fast.

• Simplicity. The principle is easy to understand, since it is a hash-and-sign signature.

• Public key of reasonable size. The public key sizes are 9,104; 22,082; and 63,392
bytes respectively for the different security levels. This is rather uncommon in
multivariate cryptography, where for the NIST Level I parameters of UOV the public
key size is about 48 Kbytes. MAYO is an exception in the MQ family as it has small
public key of the same magnitude as Falcon, 900 bytes. It is worth remembering the
size of Dilithium public key is 1,312 bytes.

• UOV-based. UOV is a well-known scheme studied for more than 20 years.

• Strong security arguments. We think the +̂ technique increases the security of
VOX since it can be viewed as an intermediate scheme between UOV and a full
random system of quadratic equations.

The limitations are the following.

• Large public keys. Despite all the techniques used to compress the public key,
the main limitation of VOX is its size, which is large compared to elliptic curve,
isogeny-based, structured lattice-based, hash-based, and MPC-in-the-head signature
schemes. The size of VOX-I public key is 10 times larger than Falcon and 7 times
Dilithium, which could be problematic in some applications.

• Signature process a little more complex than UOV. Contrary to UOV, we
need to solve a small system of quadratic equations in a small number of variables.
The literature in this area is rather small, but we think it can be a good idea to solve
this new problem efficiently.

In conclusion, VOX has attractive properties and performances that match the new
NIST call for proposals: diversity in the assumptions, very short signature size, reasonable
size public key, and strong security arguments. We think there is room of improvements
for the implementations.
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